EPFL- Spring 2025 Differential Geometry HT: G. Moschidis
SOLUTIONS: Series 10 Riemannian Geometry 2 May 2025

10.1 Let (S,g) be a Riemannian surface (i.e. dimS = 2). Suppose that, in polar coordinates (r,0)
around a point p € S, the metric g takes the form

g=dr*+ (f(r, 8))2d92
(recall that, as we showed in class, lim,_o f(r,0) = 0 and lim,_,0 0, f(r,0) = 1).

(a) Show that the sectional curvature K of (S, g) satisfies at any point in this coordinate
chart:

O f
— + Kf=0.
or? /
(b) Derive an expression in polar coordinates for any metric of constant sectional curvature
in dimension 2.

(¢) Show that any two Riemannian surfaces with constant sectional curvature of the same
value are locally isometric. Are they also globally isometric?

Solution. (a) We need to derive an expression for the sectional curvature K in the (r, ) coordinate
system. Note that the matrix of the metric components and its inverse take the form

|9 Gre| _ 10 -1 __ g” gre . 1 0
[g] - |:99r 999:| [O f2:| ) [g] |:gt9r 990:| |:O f—2 :
Therefore, using the formula I'j; = 29" (8:915 + 0j91 — D1gi;) for the Christoffel symbols, we can
readily compute

F:r =0, 7F;9 =0, Fge =—fo.f,

O f O f

‘Y=o, % === 1% ="-".
0 f 00 2](-
The formula R%, ;, = 0.'¢, — 9,U'¢, + T4 'Y, — T4 T% for the Riemann curvature tensor then yields:

Rr@r@ = gM'RTGrG + gT9R097"9
= aTFgG - aargr + F:arge - Fgargr +0

Oy
:ar(_farf) _O+O_(_farf) ff
- —Jirs
Therefore, since the sectional curvature K was defined by
K — RT6T0

10-1121106]|* — (Or, Op)?’
we infer that
o

K = 7
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(b) In the case when K = const, integrating the relation

Pf+Kf=0

with respect to r and using at r = 0 the boundary conditions f|,—o = 0 and 0, f|,—o = 1, we obtain
the following explicit representation for f(r,6):

1. In the case when K > 0:

f(r,0) = \/% sin(vVEKr) and g =dr?+ % sin?(VKr)do*

(this is the round metric on the sphere of radius \/LE)

2. In the case when K = 0:

f(r,0) =r and g =dr*+r’do*

(this is the flat metric gg).

3. In the case when K < O:

1

f(r,é’): \/j

1
sinh(vV—Kr) and g¢=dr*+ % sinh?(v/— Kr)d§*

(this is a rescaling of the hyperbolic metric by the factor ﬁ)

(c) From part (b) of this exercise, we deduce that if (S1,¢;) and (S, g2) have both constant
curvature equal to K, then for every p; € S7 and py € S, in any local neighborhoods of those points
covered by polar coordinates, the expression of the metric is the same. Thus, there is a neighborhood
Uy of py in Sy and Uy of py in Sy such that (U, g1) and (Us, go) are isometric. These surfaces are
not necessarily globally isometric; for instance, (R?, gg) and (T? = R?*/Z?2, gg) have both vanishing
sectional curvature, but the latter is compact while the former is not. Similarly, the round sphere
(5%, gs2) and the projective plane (RP?, gp2) are locally isometric with sectional curvature equal to
+1, but are not globally isometric, as seen in the 2"¢ exercise sheet.

10.2

(a)

Let F': (M, g) — (N, h) be an isometry. Show that, for any X,Y, Z, W € I'(M) and any
peM,
Ry(F X, F.Y, F.Z, FW)|pp) = Ry(X,Y, Z,W)|p,

where R,, R;, are the Riemann curvature tensors associated to g, h, respectively, and
F.(V) = dF(V). Hint: Use the fact that, for any such isometry F, V%)X(F*Y) =
F.(VYY).

Let (M, g) have the property that, for any p, g € M, any non-collinear Vi, V, € T, M and
non-collinear Wy, Wy € T, M, there exists an isometry F' : M — M such that F(p) = ¢

and the plane spanned by {F,Vi, F.V5} is the same as for {W;,Ws}. Show that the
sectional curvature is constant on M, i.e. that for any p € M and any X,Y € T, M which
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are not collinear, K (X,Y')|, has the same value K. A Riemannian manifold with the last
property is called a space form. Show that the Riemann curvature tensor satisfies in this
case:

Remark. For n < 3, every isotropic Riemannian manifold is a space form; this is not

true for n > 4.

Solution. (a) Using the fact that
VI (RY) = F. (VYY) forall X,V € (M)

(which was proved when F': (M, g) — (N, h) is an isometry in the solution of Exercise 6.1), together
with the relation [F, X, F.Y] = F,([X, Y])(which is true for any smooth map F'), we have:

Ry(F.X, F.Y, F.Z, F.W) =
%Xv” FW> Do (FW) — [FXFY]<F*W>, F.Z),
Vi Vi (W) — D (BW) = V0 vy (B, B.Z),
rox (FL(V3) —v;fly( (VW) = BV W), F.2),
F.(VOVYW) - k. ( VOW) - PV, W), F.2),
*(v@ VoW - vOvOw - v W), £.2),
vgg W —VIVIW - Vi, W, Z)
Ry(X, Y)W, Z), = Ry(X,Y, Z,W),

*

g

where, in passing to the second to last line above, we used the fact that F'is an isometry.

(b) Let p,p’ € M and XY € T,M, X" Y'" € T, M, such that X is not collinear with ¥ and
similarly for X’ and Y’. By our assumption, there exists an isometry F' : M — M with F(p) = p/
such that F.X, F.Y € span{X',Y'}. Since F, does not have a kernel and XY are not collinear,

F. X, F,Y cannot be collinear; thus, there exist a, b, c,d € R with det (CCL Z) = (0 such that

F.X =aX'+0Y', FEY =cX' +dY'.

Note that, as we calculated in class, the symmetries of the Riemann curvature tensor imply that, in

this case,
a b

R(F.X,EY,F.X,F.Y) = (det ( j

>) RIX', Y, X', Y")
and we can similarly calculate:

a b\ \?2
XY I = (R Ry = (den (0 0) ) (RCIPIVIE - (X0 772).
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Therefore, using the definition of the sectional curvature and part (a) of this exercise (since F' is an
isometry), we calculate that

R(X,Y,X,Y)
[ XIPIY]? = (X, Y)?
R(F.X,FY,F.X,FY)
| FX|PFY [ = (FX, FY)?
_ R(X,Y',X',Y")
XY - (X, Y
= Ky (X',Y").

K,(X,Y)=

Thus, we proved that (M, g) has constant sectional curvature, i.e. there exists some K € R such that
K,(X,Y)=K forall pe M and non-collinear X,Y € T, M.
This implies that, for any X,Y € I'(M):
RIX,Y.X,Y) = K- (9(X,X)g(Y.Y) = (9(X,Y))?). (1)

We will now show that, using the symmetries of the Riemann curvature tensor, we can express
R(X,Y, Z, W) as a linear combination of terms of the form R(U, V, U, V') for suitable vector fields U, V/
defined in terms of XY, Z W; these terms satisfy the relation (1). Recall that if b is a symmetric
bilinear form, then b(X,Y") can be expressed as a linear combination of terms of the form b(V, V) via
the well-known polarizing identity

b(X,Y) :i(b(X+Y,X+Y)—b(X—Y,X—Y)>.

Replacing Y with tY, dividing the whole expression by ¢ and then taking the limit ¢ — 0, we obtain
the alternative (but less standard) differential form of the polarizing identity:

1 10
b(X,Y) = lim —(b(X SV, X 1Y) — (X — 1Y, X — tY)) = - Ih(X +tY, X +1Y)| .
t—0 4t 20t t=0
We can obtain a similar identity for (0,4)-tensors with the symmetries of the Riemann curvature
tensor: Let us start by computing the following expression (using the symmetries of R in the last
equality below):

0 0

ETEN (R(V1 + V3, Vo + sV, Vi + V3, Vo + s%)) (2)

t,s=0
= R(V4, V3, V1, Vo) + R(V3, Vo, Vi, Vi) + R(V1, Vi, Vs, V) + R(V1, Va, Vs, Vy)
= 2R(V1, Va, Vs, Vi) — 2R(V4, Vy, Va, V5)

(in order to verify the above identity, note that if f(¢,s) is a polynomial in ¢, s, then 0,0sf|;s—o
gives the coefficient of the term ¢ - s). Therefore, combining the above identity for (V;, V5, V3, V) =
(X,Y,Z,W) and (Vi, Vs, Vs, Vi) = (Y, X, Z, W), we obtain:

0 0

a%(R(X VUZY +sW, X 412, +sW) — R(Y +12,X +sW,Y + 17, X + sW)) (3)

t,s=0
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- 2<R(X, Y, Z,W) — R(X,W,Y, Z)) _ 2(R(Y, X,Z,W)— R(Y,W, X, Z))
= 6R(X,Y,Z,W), (4)

where, in passing to the last line above, we used the fact that R(X,Y, Z, W) = —-R(Y, X, Z, W) and
R(Y,W,X,Z)=—R(X,Z,W,Y), together with the first Bianchi identity

R(X,Y,Z, W)+ R(X,W.Y,Z) + R(X, Z,W,Y) = 0.
The relation (1) implies that

R(X +tZY + sW, X +1Z2,Y + sW)
K. (g(X 12, X +12)g(Y + sW,Y +sW) — (g(X +12,Y + SW)2>

- K- ((g(X, X) +29(X, Z) + (2, 2)) (9(Y,Y) + 25g(Y, W) + s2g(W, W)

- (g(X, Y) +tg(Y7 Z) + SQ(X, W) + Stg(Z, W))2>

Thus, substituting the above expression for the curvature terms in the left hand side of the polarizing
identity (3), we calculate that

R(X,Y,Z,W) =K - (g(X, Z)g(Y,W) — g(X,W)g(Y, Z)).

10.3 (a) Compute the sectional curvature of the hyperbolic plane (H?, gy). Hint: Use the expression
of gn in polar coordinates.)

(b) Compute the Riemann curvature tensor, Ricci tensor and sectional curvature tensor of
(5", gsn). Hint: You can do the computations directly in one of the coordinate expressions
of gsn that we’ve seen in the exercises, or note that (S", gsn) is a space form.

Solution. (a) In a previous exercise4, we calculated that, in polar coordinates around each point,
gy takes the form
gy = dr® 4 sinh® rdf*.

Thus, using Exercise 10.1 with f(r,0) = sinh(r), we calculate that

1

h==7

OXf = —1.

(b) The group SO(n + 1) of linear isometries of (R"*!, gg) also acts isometrically on (5", gsn)) C
(R™, gp). Tt is easy to verify that for any p,p’ € 5" and any tangent 2-planes IT C 7,5" C T,R"™,
' C T,5" C TyR"™, there exists an F € SO(n + 1) with F(p) = p’ and F,(II) = IT* (one way to
see this is by noting that, for any p € §" and 2-planes II C T,,5" C T,R™*!, the plane II is orthogonal
to the unit vector ey connecting 0 to p; therefore, if we extend ey to an orthonormal base {e,}"_,
such that ey, es are parallel to the 2-plane II, and we define a similar basis {€,,}”_, associated to p/
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and II'). Therefore, Exercise 10.2 implies that (5", gsn)) is a space form and, hence the Riemann
curvature tensor of gs» takes the form

R(X,Y,Z,W) =K - (gsn(X, Z)gsn (Y, W) = gsn (X, W)gsn(Y, Z)) (5)

for some constant K on S". There are two ways to compute K (and show it is equal to +1):

10.4

In the local coordinates (z',...,2") coming from the stereographic projection (see Exercise

2.3), the metric gs» takes the form

n

4 02
gsn = WZ(‘”)

=1

(where |z|? = Y (2)?). Therefore, at the point p with coordinates (z',...,z") = (0,...,0),

1=

we compute that (gs»)ij|, = 405, Ok(gsn)ijlp = 0, 0k0i(gsn )ijlp, = —166;;0x and, therefore,
R1212|p = 16.
Therefore, evaluating (5) at p for X =7 = 0; and Y = W = 0, we compute that

K — R1212|p
(98")11|p(98n)22|p - ((98'”)12\1;)

5 = 1.

For n = 2, we have calculated in Exercise 6.4 that, in polar coordinates around each point, gg2
takes the form
gs2 = dr® + sin® rd6”.

Thus, using Exercise 10.1 with f(r,0) = sin(r), we calculate that, in this case,

1
f

In dimensions n > 2, using the fact that the intersection of any 3-dimensional vector space
V of R™! with S C R™™! is a totally geodesic 2-sphere Sy of (5", gs») which is isometric to
(52, gs2); thus, as a corollary of the Gauss equation (that we will see next week), the sectional
curvature of (S", gsn) with respect to any tangent 2-plane to Sy is the same as the sectional
curvature of the induced metric on Sy, and hence equal to +1.

K=—--0f=+1

Let f: R™ — R be a smooth function. Consider the submanifold M; of R"™ = R x R" which
is the graph of f, i.e.
My ={(t,z) ERxR": t = f(x)}.

Compute the second fundamental form and the Riemann curvature tensor of the induced metric
on My. (Hint: You might want to use the Gauss equation for the latter calculation.)
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Solution. Let us fix a Cartesian coordinate system (x!,... 2") on R"; we will use the notation
(t;7) = (t,z%,...,z") for the corresponding Cartesian coordinates on R""! = R x R". We will work

in the parametrlzation of M by R" obtained by viewing M as the graph of the function f: We will
define the coordinate chart ® : M; — R™ to be the projection CID((f(a_:), i)) = x; the corresponding
parametrization map ®~! : R® — M, C R"*! is given by & '(z) = (f(2); z).

Remark. Note that, via the coordinate chart ®, functions on M; = {t — f(z) = 0} C R™*! can also
be viewed as functions of the variables (z!,... 2™), and vice versa; we will identify a function A in

the former class with its coordinate expression h o 1.

For any p € M, the tangent space T,M; C T,R"! is spanned by the coordinate vector fields

X; = (CID_I)*BBZ, i=1,... n The vectors X; have the following expression with respect to the

Cartesian frame 2 -2, ... -2 of T,R";
S a1 e

Ot (0

(you can verify that X;(t— f(z)) = 0 and, hence, X; is tangent to the submanifold M; = {t—f(a?) =
0}).

Remark. If h is a function on M defined in terms of the Cartesian variables (¢;z) of R™™! and
h o ®~1 is its coordinate expression, then we trivially have that

Xi(h) = 9;(ho®™").

Since, as stated in the previous remark, we will identity h with h o ®=!, we will use the notation
d;h and X;h interchangeably for functions on M to denote either X;(h) or d;(h o ®~'). This is a
standard notational convention when dealing with coordinate expressions on submanifolds.

For any p € M, the normal space (T,M;)* C T,R"™! is spanned by the unit vector 7 which

is perpendicular to X; for ¢ = 1,...,n. Hence, we can compute the Cartesian components of n =
~t 0 ~q 0
g 4 i

3>

<ﬁ ﬁ)[RnJrl — 17
( X>[Rn+1 =0 forizl,...,n.

The above system of equations has two solutions (which can be found by first solving (7, X;)gnt1 = 0
to express each of the 7?’s in terms of 7' and then using the quadratic equation (7, 7)gn+1 = 1 to
find a value for n'):
0
) (7)

(e~ & Vit

where |df|? = Y7 (9;f)* From now one, we will fix a coorientation for M by choosing 7 to be

. . . At — 1 Aj —_ 8Jf . —
equal to (7) with the + sign, i.e. 0 o and 7 WirTrEk j=1,
The first fundamental form of M; (i.e. the induced metric on M; C (R™*!, gg)) takes the form:

. I T O R R
9ij = 9e(Xi, Xj) = <3z‘f§ +om Oif g + @>Rn+1 =0, f0; f + di;.

Page 7



EPFL- Spring 2025 Differential Geometry HT: G. Moschidis
SOLUTIONS: Series 10 Riemannian Geometry 2 May 2025

Note that, denoting with V the Levi-Civita connection of gz (i.e. the flat connection on R"!), we
have

0 0
5 — XL (At (YL
Vx,n=X;(n )(975 + X;(n )(%j
0 0

— A.(»t (HI
= 0;(n )6% + 0;(1v >8jj

1 0 = o, f 0
V1+[df]2/ ot ; V1+[df[?/ 0z
Thus, the scalar second fundamental form b can be computed by the formula

bij = b(Xi, Xj) = —gu(Vx,n, X;)

P 9 o .0 D
- Jm)a R e 75 e
1 9 f

0,0, f
VI+ AP

The second fundamental form B then takes the form

00,0
VI+]df2

Finally, using the Gauss equation and the fact that the Riemann curvature tensor Rp of gp vanishes
identically, we have

_ 0;0,f - 0:0,f — 0;0,f - 0;0
Rijri = birbji — bybj, = b0 fi_ ‘df‘glf i0:]

(recall our convention that Ry = R(0;,0;,0k,0;) = —Q(R(&-, 0;) Ok, 81)).

10.5 Let (M",g) be a smooth Riemannian manifold and let p be a point on M. For any given
0 <7 < «(p), let us consider the open neighborhood U = exp, ({v o)l < f}) of p. Recall

that U\ {p} is prametrized by the polar coordinates (r,w) € (0,7) x S"~, where r(-) = dist,(-).
Recall also that, in any local coordinate chart (z!,...,2"1) on S"~!  the metric g in the
(r,zt,..., 2" 1) coordinate system takes the form

g = dr® +r°g;;[r]dx'da’,

where g;;[r] =0 (gsn—1)ij and 0,gi;[r] %0 (with gsn—1 denoting the standard round metric

on the unit sphere).
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(a) Show that
& (’I“QQU[T]) = —Qbij[T],
where b[p] is the scalar second fundamental form of the hypersurface S, = {r = p} with
respect to the coorientation determined by gradr. (Hint: Use Exercise 11.1.).)

(b) Show that
0,bij[r] + 172G [r] - bia[r] - b [r] = Ryiry,

where R is the Riemann curvature tensor of g.

* (¢) Show that if R = 0, then g;;[r] = (gsn-1);; for all » € (0,7). Deduce, in this case, that
g is isometric to the flat metric gp. (Hint: Show that, in this case, the tensor M[r] =
172G [r] - bjp[r] on S, satisfies, with respect to r, the matriz Ricatti ODE 0,M — M?* = 0.
What is lim, o M ?)

Solution. (a) Since, in the (r,z',... 2" !) coordinate chart, the metric takes the form
g = dT‘2 —|— ngijdl'idl'j,

n—l)

(where, for any i,j € {1,...,n— 1}, g;; is a function depending on r,a', ... = , we calculate that

gr =1, ,q; = 7”2§z'j7 gri =0

and

grr — 1’ gij — ,r,—Qgij7 gri =0
(where g¥ are the components of the inverse matrix of [g;;]). Therefore, for the coordinate 1-form
dr, we can readily compute that

gradr = drf = %

(since (dr*)" = ¢g""dr, + g"'dr; = dr, = 1 and (dr¥)* = ¢g"dr, + gdr; = 0). Using Exercise 11.1.b, we
can compute that the scalar second fundamental form of the level set S, = {r = p} of the function
r takes the form

H XY
bx,v) = HessUIAY) B forall X,V € DM, S,).
[gradr|]
Note that the tangent space at any point of S, is spanned by the coordinate vector fields %, 1=
1,...,n—1 (which are also the coordinate vector fields for the parametrization of S, by (z',..., 2" 1)).

Therefore, applying the formula for the expression of the Hessian in local coordinates from Ex. 11.1.a,
we calculate in the (r, 2!, ..., 2""1) coordinate system:

b;j = —Hess|r](0;,0;) = —Hess[r|;; = —(820]'7" — Ffjﬁgr> =T

(since O,r =1, 0;r = 0).
Remark. For the rest of this exercise, we will use the convention that Latin indices ¢, 7, k,[,...,
range over the coordinates (z!,..., 2" 1), while Greek indices 3, 3, ... range over (r,z!,... 2" 1).
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From our computation of the components of g and ¢!, we have:

I = g’ (aigﬂj + 0598 — 3ﬁgij)

1
g’ (aigrj + 0igri — 3rgzj) + §grk (@‘9@‘ + Ojgri — 8kgz‘j)

N~ DN~

1
= —iargij -+ 0

1 _
= —§ar(7’29z‘j)-

Therefore, combining the above relations, we get the desired identity
1 _
bij = —5@(7‘29@'3‘>-
(b) Using the expression for the components of the Riemann curvature tensor in local coordinates

R%.5 = 04135 — 0515, + F%FZ\% - ng\réw

1

together with our calculation of the components of g and g7, we can readily compute:

Rirj = grg R,
= gy + grkRkirj
= Rrirj
= 0.1 — O, + T\ — T,

T

We already computed in part (a) that
T 1 2-
[ = —50:(r°g,) = byy.
For the rest of the Christoffel symbols appearing in the above expression, we can similarly compute:

1 1
F:T B égrﬁ (87"g57" + a”'g/BT - 8/397"7”) - 597"7‘ (argrr + argrr - argﬂ“) +0 = 07

1 1
I, = 59“ (0,98 + Digar — 039ir) = 59" (0rgri + 0igrr — 0rgir) +0 =0

and

1 1 1 . ) Ly
Iy = 59'“ (0:95-+0,95i—059ir) = 59’“’ (8- 91i+0591r—019ir ) +0 = 59’“&% =r2g"0,(r’qu) = —r 2" by

Therefore,
Ry = 0,15, = T, T% +0 = 9,by; + 172" by,
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(¢) In the case when the Riemann curvature tensorvanishes identically, the system of equations
derived in parts (a) and (b) for g and b becomes:

{ar (r25;) = —2by;, "
Opbij + 172" - by - bjy, = 0.
Let us consider the (1,1) tensor M on S, obtained by raising one of the indices of b, namely
M; = g™*by; = 25"y,
Thus, we can readily compute:

7 zk
&Mj g byj)

On(

&(r g )by + r‘2g““a brj
(
(

Or(r72g"Vor; — 172G 2" - bra - by
ar r -2~ zk)bk] (7“ glk . bk:a) . (7" 29abbjb) = ar(r_zgik)bk:j - M;M]qa

where, in the second to last step, we used the equation for 0,b;; above. Recall that, if A is a
matrix-valued function depending on a parameter s, then

d dA
(A= 41222
(A7) s

AL
ds

Since [r~2g%*] are the components of the inverse matrix of [r?g;;], the above relation formula implies
that

0,(r2g™) = — (r2g") - (0:(r%gm)) - (r2g™)
= 2(r2g") - by, - (r25™)
=2M,, - (r~ 29’”]“)

where, in the second to last line above, we made use of (8) for 9,(r?gy,). Substituting in the right
hand side equation for &M;, we therefore obtain:

0. M = 2M,, - r=2g"™ - by — MM}
= 2M; M" — M. M¢
— MM
or, in matrix notation, for the matrix M = [M]:
o.M = M?.

Using the formula for the derivative of the inverse of a matrix, the above equation is equivalent to

0, (M) = 1. )
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As r — 0, we have that g;; = (gsn—1);; and 0,g;; — 0. Therefore, since b;; = —%8r(7"2§,~j), we
have that

lim, g (TM;) = lim,_o (r’lgikbko
1. 1 _
= —Elimr—m (7’ 19 kar(TQkaj)>

1 e i}
- _Elzmr_}O (7’ g% (2rge; + r2&~gkj))

. ik~ I, _
= —lim,_9 <g kgkj) - §l2mr%0 <7’3r9kj>
= _5;7

or, in matrix notation,
lim(rM) = —I

r—0

and, hence,
lim(M ™) = lim(r(rM)™") = 0.

r—0 r—0

Integrating the ODE (9) from r = 0 using the above initial condition, we infer that
Mt'=—l & M=r.

In view of our definition M} = r=2g"*by; = —3r~2g% 9, (r?g;),), the above is equivalent to the state-

ment that )
—57"_29“‘;8," (rggjk) = —r_léz-.
After expanding 0, (r2§jk) = 2rgji + r*0,g;; and multiplying both sides with g; (and summing over

i), we obtain:

L o _ 1 _
—5r (200 +170:9) = —rTlgp & 0gu =0,

Since hmrﬁo gl] = (gSn_l)ij; we deduce that
Gij = (gsn—1)ij-
Therefore,

g= dr? + T2(ggn71)ijd$idl'j = gg.

10.6 Let (Mj,g1) and (M, g2) be two Riemannian manifolds and let (M, g) = (M1 x May, g1 B gs be
their Riemannian product; the metric g; @ gs is defined so that, for any p = (p1, p2) € My X My
and any X,Y € TL,M ~ T, Mi®T,, Ms,if X = X;+X5and Y = Y;+Y5 is their corresponding
decomposition into tangent vectors tangential to M; x {po} and {p;} x My then

9(X,Y) = g1(X1, Y1) + 92(X2, Y2)

(in other words, M; X {p2} and {p;} X My intersect orthogonally and M; — M; x {p,} and
My — {p1} x My are isometric embeddings).

Page 12



EPFL- Spring 2025 Differential Geometry HT: G. Moschidis
SOLUTIONS: Series 10 Riemannian Geometry 2 May 2025

(a) Compute the Riemann curvature tensor R of (M, g) in terms of the Riemann curvature
tensors R; of (M, ¢g:),1=1,2.

(b) Show that the sectional curvature of (M, g) cannot be strictly positive or strictly negative
for all tangent 2-planes.

(*¢) Show that there exists a surface in (5% x 52, gs2 @ gs2) which is totally geodesic (i.e. has
vanishing second fundamental form) and is isometric to the flat torus (T%, gg).

Solution. (a) Let p = (p1,p2) € M = M; x My; note that any pair of curves t — ,;(t) € M;
with 7;(0) = p;, i = 1,2, can be identified with the curve t — ~(t) = (71(¢), %2(t)) € M, ~(0) = p.
Through this identification, we can also identify 4(0) with (41(0),52(0); thus, we naturally have
T,M ~T, My ®T,, Ms, with T, My C T, M corresponding to the set of tangent directions at t = 0
of curves of the form ¢t — (y1(¢),p2), 71(0) = p1 (i.e. T, M, corresponds to the tangent space of the
submanifold My x {p2} at (p1, p2)), and similarly for 7,, M. For any vector field V' € I'(M), we will
denote with V = V; + V4 its decomposition into components tangential to M; and M, respectively.
If (z',...,2") is a local coordinate chart on U; C M; and (y',...,y™) is a local coordinate chart on
Uy C My, then in the product coordinate chart (z',... 2" y', ... y™) on U = U; X Uy C M, the
decomposition V = Vj + Vj; corresponds to

- 0 0
Vi=Vi—, Vo=V*—o/
! ozt 2 oy~
where we are using Latin letters 7,7, k, ... to denote indices associated to the chart (x!,...,z") on

M, and Greek letters a, 8,7, ... for indices associated to the chart (y',...,y™) on My Note that,
in general, both the components of Vi and Vs depend on both x* and y*.

For any point p € M and any X,Y,Z W € T,M, we are asked to compute R(X,Y,Z W) in
terms of R, R® and the decompositions X;,Y;, Z;, W;, i = 1,2, of X, Y, Z,W. In fact, we will show
that

R<X7 }/7 Z? W) - R(l)(X17 }/17 Zl7 Wl) + R(2)<X27 }/27 ZQ7 WQ) (]‘0)

To this end, let us fix a product coordinate chart (z!,...,2";y', ..., y™) on a neighborhood of p as
above (recall our convention that Latin indices are associated with (z!,..., z™), while Greek indices
are associated with (y',...,y"). It is easy to verify (in view of the multilinearity of R(-,-,-,-)) that
(10) will follow once we show that

1 2
Rijkl = joz)gn Raﬂvé = Rép;w
and that all the “mixed” components vanish, i.e.
Raijk = Raﬂij = Raiﬁj = Raﬁ’yi =0

(using the symmetries of R, the above implies that any component of R with mixed Greek and Latin
indices vanishes).

Let us denote with V() V(2 the Levi-Civita connections of the Riemannian manifolds (M, g;)
and (Mas, go). We will now express the Christoffel symbols of the Levi-Civita connection V of (M, g)
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in terms of those of VU, V(® Note that our assumption that ¢ = g; @ gy is equivalent to the
statement that

9i5 = (91)ijs  Gop = (92)ap,  Gia =0
and, thus,
g7 =(g)?, 9" =(9)*, ¢*=0
and that the components (g;);; of g1 depend only on (z*, ..., z") (and similarly for g and (y*, ..., y™)).

1. The Christoffel symbols of the form F;k or I'g, (i.e. with indices lying entirely in one of the
charts (x',...,2") or (y',...,4™)) can be computed as follows:

1 . 1 .
—g“(ajglk + Okgry — algjk) + 59“ (ajgak + OkGaj — aagjk)

L = 5
1
2

(91)"(9;(91)uk + Oul(g1)1; — Bi(gn) k) + 0
= (F(1)>§k

and, similarly,

5, = (F(z))gw

2. For the Christoffel symbols of mixed type I'{;, we calculate

(6% M 1 . 1 o
Iy =39 “(Oigrj + 039 — Orgij) + 29 ?(9i98) + 0395 — 039:5)

=0+0

(where we used the fact that ¢®* = g5; = gg = 0 and that the components (g;); of g; depend
only on (z',... 2")). Similarly, ‘

3. For the Christoffel symbols of mixed type I'? ., we similarly have

ag?

N 1,
Foi =39 " (0agrj + 0jgra — Okgaj) + 59 ?(0ags; + 03905 — 059a;)
—0+0

and, similarly,
5 = 0.

Collecting the above calculations, we deduce that
Vo.d; = V05, V05 =V 95, V0o = Va0 =0. (11)

Moreover, if V' € I'(M) is a vector field which is “decomposable”; in the sence that, in the product
coordinates, V(z;y) = Vi(x) + Va(y) (namely the components V* are indpendent of y* and V* are
indpendent of ), then, for any X € T'(M):

(VxV) = X0,V + X0,V + T XVF + T, XOVF + T, XIVP 4+ T X oVP
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= X0,V + 0+ (TM), X7V* +0
= (VW)
and, similarly,
(VxV)* = (VaVa)",
so that
VxV = VPV + V. (12)

Remark. Let v(t) = (711(t),72(¢)) be a curve in M with 41,42 # 0. It is easy to verify that, in a
product coordinate system in a small enough neighborhood U of a point p of 7, the tangent vector
field 4 can be extended (in a non-unique way) to a vector field on & which is decomposable in the
above sense. Therefore, the acceleration of the curve v around a point where 71,42 # 0 satisfies

. 1) . 2) .
Vi = V)4 + Vs,

In particular, v is a geodesic of (M, g) if and only if 71 and 75 are geodesics of (M, g1) and (M, ¢2),
respectively.

Note that the coordinate vector fields azi and 6?% are decomposable (since their components are

constant functions in (x,y), equal to 0 or 1), and the same is true for the vector fields V,0;, Vj,0s
and Vg, 0;, since, in view of (11), we have

(Vo051 = VY0, = (PW)Ed,,  (V5,05)2 =0
(Vo.05)1 =0, (Vo,08)2 = V5 05 = (D®)1,0,,
Vo.0i = V5,00 =0

and (F(l))fj is a function of only (x',... 2™), while (F(Z))Zﬁ is a function of only (y',...,y™). There-
fore, using the formula (12) for those vector fields, we have:

Rijin = R(0;, 0, O, O))
=—yg (Vai(vajak) —Vo,(Va,0k), (91)
= —g([V), (Vo,0000) + V&, (Vo,00)2)] = [V, ((Va.001) = (V) ((V,00)2)],01)

= g1 ((V9'V5) 0 = VY5 D) . 01 = 02 (V5 V5 0% = V5 V500 . (002
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and, similarly, with the roles of M; and M, inverted:
2
RQBWS = R((x,é)"y(?'
Moreover,
Reiji = R(0a, 0, 05, Ok)
= —Q(Vaa(vaﬁj) — V5,(Va,0)), 3k)
1 2 1 2
= —g(vgaih (Vo,0)1) + Vi3, ((V0.0)2) = Vigh (Va,0))1) = Vi3, ((Vaaaj)2)73k>
— —g<0+0—0—0,8k)
=0
and, similarly for the rest of the mixed components:
Rapij = Raipj = Ragyi = 0.

Therefore, (10) holds.

(b) In part (a) of this exercise, we computed that, in a product coordinate system (z!, ... 2™y ... y™),
the mixed components of the Riemann curvature tensor of the form R,;s; vanish identically. There-
fore, if II C T, M is the 2-plane spanned by the coordinate vector fields % and %, then

Riaia

“TonoE

£, (10)

Hence, the sectional curvature cannot be strictly positive or strictly negative for all 2-planes in 7, M.

(¢) Let S; be one of the equators of (5%, gs2) (in the standard spherical coordinates (6, ¢) on S,
(0,9) € [0,7] x [0,27), we can pick Si to be the curve § = 7). Let v : [0,27) — S be a geodesic
parametrization of S; (so that v(t) is a geodesic curve in (52, gs2).

In the product Riemannian manifold (5% x 2, gs2 @ gs2), let us consider the 2-surface S = S; x Sy;
this surface is homeomorphic to S! x 8! = T2 and is parametrized by ¥ : [0, 27) x [0,27) — 52 x 5%
U(t,s) = (y(t),7(s)). Since the curve y(t) is a geodesic of (5%, gs2), our remark below (12) imples
that all the curves of the form ¢ — (7(/\115 + 1), y( Aot + tg)) € S for A\, Ay # 0 are geodesics of
(5% x 52, gs2 @ g52). Notice that, for each p € S, the set of curves of this type that pass through p
span a dense subset of T,5. As we showed in part (a) of Exercise 9.3, the second fundamental form
B(-,+) of S C 5% x §? must vanish in those directions; hence, since B(-, ) is bilinear (and, therefore,
continuous) on 7,5, we must have

B(v,v) =0 forall v e T,S.
Since B(-,-) is also symmetric, we infer that
B(v,w) =0 for all v,w € T,S.

Therefore, S is a totally geodesic submanifold of (5% x 52, gg2 @ gs2).
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