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10.1 Let (S, g) be a Riemannian surface (i.e. dimS = 2). Suppose that, in polar coordinates (r, θ)
around a point p ∈ S, the metric g takes the form

g = dr2 +
(
f(r, θ)

)2
dθ2

(recall that, as we showed in class, limr→0 f(r, θ) = 0 and limr→0 ∂rf(r, θ) = 1).

(a) Show that the sectional curvature K of (S, g) satis�es at any point in this coordinate
chart:

∂2f

∂r2
+Kf = 0.

(b) Derive an expression in polar coordinates for any metric of constant sectional curvature
in dimension 2.

(c) Show that any two Riemannian surfaces with constant sectional curvature of the same
value are locally isometric. Are they also globally isometric?

Solution. (a) We need to derive an expression for the sectional curvature K in the (r, θ) coordinate
system. Note that the matrix of the metric components and its inverse take the form

[g] =

[
grr grθ
gθr gθθ

]
=

[
1 0
0 f 2

]
, [g]−1 =

[
grr grθ

gθr gθθ

]
=

[
1 0
0 f−2

]
.

Therefore, using the formula Γk
ij = 1

2
gkl

(
∂iglj + ∂jgli − ∂lgij

)
for the Christo�el symbols, we can

readily compute

Γr
rr = 0, ,Γr

rθ = 0, Γr
θθ = −f∂rf,

Γθ
rr = 0, Γθ

rθ =
∂rf

f
, Γθ

θθ =
∂θf

2f
.

The formula Ra
bcd = ∂cΓ

a
bd − ∂dΓ

a
bc + Γa

ckΓ
k
bd − Γa

dkΓ
k
bc for the Riemann curvature tensor then yields:

Rrθrθ = grrR
r
θrθ + grθR

θ
θrθ

= ∂rΓ
r
θθ − ∂θΓ

r
θr + Γr

raΓ
a
θθ − Γr

θaΓ
a
θr + 0

= ∂r
(
− f∂rf

)
− 0 + 0− (−f∂rf)

∂rf

f

= −f∂2
rf.

Therefore, since the sectional curvature K was de�ned by

K =
Rrθrθ

∥∂r∥2∥∂θ∥2 − ⟨∂r, ∂θ⟩2
,

we infer that

K = −∂2
rf

f
.
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(b) In the case when K = const, integrating the relation

∂2
rf +Kf = 0

with respect to r and using at r = 0 the boundary conditions f |r=0 = 0 and ∂rf |r=0 = 1, we obtain
the following explicit representation for f(r, θ):

1. In the case when K > 0:

f(r, θ) =
1√
K

sin(
√
Kr) and g = dr2 +

1

K
sin2(

√
Kr)dθ2

(this is the round metric on the sphere of radius 1√
K
).

2. In the case when K = 0:
f(r, θ) = r and g = dr2 + r2dθ2

(this is the �at metric gE).

3. In the case when K < 0:

f(r, θ) =
1√
−K

sinh(
√
−Kr) and g = dr2 +

1

−K
sinh2(

√
−Kr)dθ2

(this is a rescaling of the hyperbolic metric by the factor 1√
−K

).

(c) From part (b) of this exercise, we deduce that if (S1, g1) and (S2, g2) have both constant
curvature equal to K, then for every p1 ∈ S1 and p2 ∈ S2, in any local neighborhoods of those points
covered by polar coordinates, the expression of the metric is the same. Thus, there is a neighborhood
U1 of p1 in S1 and U2 of p2 in S2 such that (U1, g1) and (U2, g2) are isometric. These surfaces are
not necessarily globally isometric; for instance, (R2, gE) and (T2 = R

2/Z2, gE) have both vanishing
sectional curvature, but the latter is compact while the former is not. Similarly, the round sphere
(S2, gS2) and the projective plane (RP 2, gP 2) are locally isometric with sectional curvature equal to
+1, but are not globally isometric, as seen in the 2nd exercise sheet.

10.2 (a) Let F : (M, g) → (N , h) be an isometry. Show that, for any X, Y, Z,W ∈ Γ(M) and any
p ∈ M,

Rh(F∗X,F∗Y, F∗Z, F∗W )|F (p) = Rg(X, Y, Z,W )|p,

where Rg, Rh are the Riemann curvature tensors associated to g, h, respectively, and

F∗(V )
.
= dF (V ). Hint: Use the fact that, for any such isometry F , ∇(h)

F∗X
(F∗Y ) =

F∗
(
∇(g)

X Y
)
.

(b) Let (M, g) have the property that, for any p, q ∈ M, any non-collinear V1, V2 ∈ TpM and
non-collinear W1,W2 ∈ TqM, there exists an isometry F : M → M such that F (p) = q
and the plane spanned by {F∗V1, F∗V2} is the same as for {W1,W2}. Show that the
sectional curvature is constant on M, i.e. that for any p ∈ M and any X, Y ∈ TpM which
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are not collinear, K(X, Y )|p has the same value K. A Riemannian manifold with the last
property is called a space form. Show that the Riemann curvature tensor satis�es in this
case:

R(X, Y, Z,W ) = K ·
(
g(X,Z)g(Y,W )− g(X,W )g(Y, Z)

)
.

Remark. For n ⩽ 3, every isotropic Riemannian manifold is a space form; this is not
true for n ⩾ 4.

Solution. (a) Using the fact that

∇(h)
F∗X

(F∗Y ) = F∗
(
∇(g)

X Y
)

for all X, Y ∈ Γ(M)

(which was proved when F : (M, g) → (N , h) is an isometry in the solution of Exercise 6.1), together
with the relation [F∗X,F∗Y ] = F∗([X, Y ])(which is true for any smooth map F ), we have:

Rh(F∗X, F∗Y, F∗Z, F∗W )
.
=

〈
Rh(F∗X,F∗Y )(F∗W ), F∗Z

〉
h

=
〈
∇(h)

F∗X
∇(h)

F∗Y
(F∗W )−∇(h)

F∗Y
∇(h)

F∗X
(F∗W )−∇(h)

[F∗X,F∗Y ](F∗W ), F∗Z
〉
h

=
〈
∇(h)

F∗X
∇(h)

F∗Y
(F∗W )−∇(h)

F∗Y
∇(h)

F∗X
(F∗W )−∇(h)

F∗([X,Y ])(F∗W ), F∗Z
〉
h

=
〈
∇(h)

F∗X

(
F∗(∇(g)

Y W )
)
−∇(h)

F∗Y

(
F∗(∇(g)

X W )
)
− F∗(∇(g)

[X,Y ]W ), F∗Z
〉
h

=
〈
F∗

(
∇(g)

X ∇(g)
Y W

)
− F∗

(
∇(g)

Y ∇(g)
X W

)
− F∗(∇(g)

[X,Y ]W ), F∗Z
〉
h

=
〈
F∗

(
∇(g)

X ∇(g)
Y W −∇(g)

Y ∇(g)
X W −∇(g)

[X,Y ]W
)
, F∗Z

〉
h

=
〈
∇(g)

X ∇(g)
Y W −∇(g)

Y ∇(g)
X W −∇(g)

[X,Y ]W, Z
〉
g

=
〈
Rg(X, Y )W, Z

〉
h
= Rg(X, Y, Z,W ),

where, in passing to the second to last line above, we used the fact that F is an isometry.

(b) Let p, p′ ∈ M and X, Y ∈ TpM, X ′, Y ′ ∈ Tp′M, such that X is not collinear with Y and
similarly for X ′ and Y ′. By our assumption, there exists an isometry F : M → M with F (p) = p′

such that F∗X,F∗Y ∈ span{X ′, Y ′}. Since F∗ does not have a kernel and X, Y are not collinear,

F∗X,F∗Y cannot be collinear; thus, there exist a, b, c, d ∈ R with det

(
a b
c d

)
̸= 0 such that

F∗X = aX ′ + bY ′, F∗Y = cX ′ + dY ′.

Note that, as we calculated in class, the symmetries of the Riemann curvature tensor imply that, in
this case,

R(F∗X,F∗Y, F∗X,F∗Y ) =
(
det

(
a b
c d

))2

R(X ′, Y ′, X ′, Y ′)

and we can similarly calculate:

∥F∗X∥2∥F∗Y ∥2 − ⟨F∗X,F∗Y ⟩2 =
(
det

(
a b
c d

))2(
∥X ′∥2∥Y ′∥2 − ⟨X ′, Y ′⟩2

)
.
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Therefore, using the de�nition of the sectional curvature and part (a) of this exercise (since F is an
isometry), we calculate that

Kp(X, Y )
.
=

R(X, Y,X, Y )

∥X∥2∥Y ∥2 − ⟨X, Y ⟩2

=
R(F∗X,F∗Y, F∗X,F∗Y )

∥F∗X∥2∥F∗Y ∥2 − ⟨F∗X,F∗Y ⟩2

=
R(X ′, Y ′, X ′, Y ′)

∥X ′∥2∥Y ′∥2 − ⟨X ′, Y ′⟩2
.
= Kp′(X

′, Y ′).

Thus, we proved that (M, g) has constant sectional curvature, i.e. there exists some K ∈ R such that

Kp(X, Y ) = K for all p ∈ M and non-collinear X, Y ∈ TpM.

This implies that, for any X, Y ∈ Γ(M):

R(X, Y,X, Y ) = K ·
(
g(X,X)g(Y, Y )− (g(X, Y ))2

)
. (1)

We will now show that, using the symmetries of the Riemann curvature tensor, we can express
R(X, Y, Z,W ) as a linear combination of terms of the form R(U, V, U, V ) for suitable vector �elds U, V
de�ned in terms of X, Y, Z,W ; these terms satisfy the relation (1). Recall that if b is a symmetric
bilinear form, then b(X, Y ) can be expressed as a linear combination of terms of the form b(V, V ) via
the well-known polarizing identity

b(X, Y ) =
1

4

(
b(X + Y,X + Y )− b(X − Y,X − Y )

)
.

Replacing Y with tY , dividing the whole expression by t and then taking the limit t → 0, we obtain
the alternative (but less standard) di�erential form of the polarizing identity:

b(X, Y ) = lim
t→0

1

4t

(
b(X + tY,X + tY )− b(X − tY,X − tY )

)
=

1

2

∂

∂t
b(X + tY,X + tY )

∣∣∣
t=0

.

We can obtain a similar identity for (0, 4)-tensors with the symmetries of the Riemann curvature
tensor: Let us start by computing the following expression (using the symmetries of R in the last
equality below):

∂

∂t

∂

∂s

(
R(V1 + tV3,V2 + sV4, V1 + tV3, V2 + sV4)

)∣∣∣
t,s=0

(2)

= R(V4, V3, V1, V2) +R(V3, V2, V1, V4) +R(V1, V4, V3, V2) +R(V1, V2, V3, V4)

= 2R(V1, V2, V3, V4)− 2R(V1, V4, V2, V3)

(in order to verify the above identity, note that if f(t, s) is a polynomial in t, s, then ∂t∂sf |t,s=0

gives the coe�cient of the term t · s). Therefore, combining the above identity for (V1, V2, V3, V4) =
(X, Y, Z,W ) and (V1, V2, V3, V4) = (Y,X,Z,W ), we obtain:

∂

∂t

∂

∂s

(
R(X + tZ,Y + sW,X + tZ, Y + sW )−R(Y + tZ,X + sW, Y + tZ,X + sW )

)∣∣∣
t,s=0

(3)
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= 2
(
R(X, Y, Z,W )−R(X,W, Y, Z)

)
− 2

(
R(Y,X,Z,W )−R(Y,W,X,Z)

)
= 6R(X, Y, Z,W ), (4)

where, in passing to the last line above, we used the fact that R(X, Y, Z,W ) = −R(Y,X,Z,W ) and
R(Y,W,X,Z) = −R(X,Z,W, Y ), together with the �rst Bianchi identity

R(X, Y, Z,W ) +R(X,W, Y, Z) +R(X,Z,W, Y ) = 0.

The relation (1) implies that

R(X + tZ,Y + sW,X + tZ, Y + sW )

= K ·
(
g(X + tZ,X + tZ)g(Y + sW, Y + sW )−

(
g(X + tZ, Y + sW

)2)
= K ·

((
g(X,X) + 2tg(X,Z) + t2g(Z,Z)

)(
g(Y, Y ) + 2sg(Y,W ) + s2g(W,W )

)
−

(
g(X, Y ) + tg(Y, Z) + sg(X,W ) + stg(Z,W )

)2)
.

Thus, substituting the above expression for the curvature terms in the left hand side of the polarizing
identity (3), we calculate that

R(X, Y, Z,W ) = K ·
(
g(X,Z)g(Y,W )− g(X,W )g(Y, Z)

)
.

10.3 (a) Compute the sectional curvature of the hyperbolic plane (H2, gH). Hint: Use the expression
of gH in polar coordinates.)

(b) Compute the Riemann curvature tensor, Ricci tensor and sectional curvature tensor of
(Sn, gSn). Hint: You can do the computations directly in one of the coordinate expressions
of gSn that we've seen in the exercises, or note that (Sn, gSn) is a space form.

Solution. (a) In a previous exercise4, we calculated that, in polar coordinates around each point,
gH takes the form

gH = dr2 + sinh2 rdθ2.

Thus, using Exercise 10.1 with f(r, θ) = sinh(r), we calculate that

K = − 1

f
∂2
rf = −1.

(b) The group SO(n+ 1) of linear isometries of (Rn+1, gE) also acts isometrically on (Sn, gSn)) ⊂
(Rn+1, gE). It is easy to verify that for any p, p′ ∈ S

n and any tangent 2-planes Π ⊂ TpS
n ⊂ TpR

n+1,
Π′ ⊂ Tp′S

n ⊂ Tp′R
n+1, there exists an F ∈ SO(n + 1) with F (p) = p′ and F∗(Π) = Π∗ (one way to

see this is by noting that, for any p ∈ S
n and 2-planes Π ⊂ TpS

n ⊂ TpR
n+1, the plane Π is orthogonal

to the unit vector e0 connecting 0 to p; therefore, if we extend e0 to an orthonormal base {eα}nα=0

such that e1, e2 are parallel to the 2-plane Π, and we de�ne a similar basis {e′α}nα=0 associated to p′
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and Π′). Therefore, Exercise 10.2 implies that (Sn, gSn)) is a space form and, hence the Riemann
curvature tensor of gSn takes the form

R(X, Y, Z,W ) = K ·
(
gSn(X,Z)gSn(Y,W )− gSn(X,W )gSn(Y, Z)

)
(5)

for some constant K on S
n. There are two ways to compute K (and show it is equal to +1):

� In the local coordinates (x1, . . . , xn) coming from the stereographic projection (see Exercise
2.3), the metric gSn takes the form

gSn =
4

(1 + |x|2)2
n∑

i=1

(dxi)2

(where |x|2 =
∑n

i=1(x
i)2). Therefore, at the point p with coordinates (x1, . . . , xn) = (0, . . . , 0),

we compute that (gSn)ij|p = 4δij, ∂k(gSn)ij|p = 0, ∂k∂l(gSn)ij|p = −16δijδkl and, therefore,

R1212|p = 16.

Therefore, evaluating (5) at p for X = Z = ∂1 and Y = W = ∂2, we compute that

K =
R1212|p

(gSn)11|p(gSn)22|p − ((gSn)12|p)2
= 1.

� For n = 2, we have calculated in Exercise 6.4 that, in polar coordinates around each point, gS2

takes the form
gS2 = dr2 + sin2 rdθ2.

Thus, using Exercise 10.1 with f(r, θ) = sin(r), we calculate that, in this case,

K = − 1

f
∂2
rf = +1.

In dimensions n > 2, using the fact that the intersection of any 3-dimensional vector space
V of Rn+1 with S

n ⊂ R
n+1 is a totally geodesic 2-sphere SV of (Sn, gSn) which is isometric to

(S2, gS2); thus, as a corollary of the Gauss equation (that we will see next week), the sectional
curvature of (Sn, gSn) with respect to any tangent 2-plane to SV is the same as the sectional
curvature of the induced metric on SV , and hence equal to +1.

10.4 Let f : Rn → R be a smooth function. Consider the submanifold Mf of Rn+1 = R× R
n which

is the graph of f , i.e.
Mf =

{
(t, x) ∈ R× R

n : t = f(x)
}
.

Compute the second fundamental form and the Riemann curvature tensor of the induced metric
on Mf . (Hint: You might want to use the Gauss equation for the latter calculation.)
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Solution. Let us �x a Cartesian coordinate system (x1, . . . , xn) on R
n; we will use the notation

(t; x̄)
.
= (t, x̄1, . . . , x̄n) for the corresponding Cartesian coordinates on R

n+1 = R× R
n. We will work

in the parametrization of Mf by R
n obtained by viewing Mf as the graph of the function f : We will

de�ne the coordinate chart Φ : Mf → R
n to be the projection Φ

(
(f(x̄); x̄)

)
= x; the corresponding

parametrization map Φ−1 : Rn → Mf ⊂ R
n+1 is given by Φ−1(x) = (f(x);x).

Remark. Note that, via the coordinate chart Φ, functions on Mf = {t− f(x̄) = 0} ⊂ R
n+1 can also

be viewed as functions of the variables (x1, . . . , xn), and vice versa; we will identify a function h in
the former class with its coordinate expression h ◦ Φ−1.

For any p ∈ Mf , the tangent space TpMf ⊂ TpR
n+1 is spanned by the coordinate vector �elds

Xi = (Φ−1)∗ ∂
∂xi , i = 1, . . . , n. The vectors Xi have the following expression with respect to the

Cartesian frame ∂
∂t
, ∂
∂x̄1 , . . . ,

∂
∂x̄n of TpR

n+1:

Xi = ∂if
∂

∂t
+

∂

∂x̄i
. (6)

(you can verify that Xi(t−f(x̄)) = 0 and, hence, Xi is tangent to the submanifold Mf =
{
t−f(x̄) =

0
}
).

Remark. If h is a function on Mf de�ned in terms of the Cartesian variables (t; x̄) of Rn+1 and
h ◦ Φ−1 is its coordinate expression, then we trivially have that

Xi(h) = ∂i(h ◦ Φ−1).

Since, as stated in the previous remark, we will identity h with h ◦ Φ−1, we will use the notation
∂ih and Xih interchangeably for functions on Mf to denote either Xi(h) or ∂i(h ◦ Φ−1). This is a
standard notational convention when dealing with coordinate expressions on submanifolds.

For any p ∈ Mf , the normal space (TpMf )
⊥ ⊂ TpR

n+1 is spanned by the unit vector n̂ which
is perpendicular to Xi for i = 1, . . . , n. Hence, we can compute the Cartesian components of n̂ =
n̂t ∂

∂t
+ n̂i ∂

∂x̄i via the relations {
⟨n̂, n̂⟩Rn+1 = 1,

⟨n̂, Xi⟩Rn+1 = 0 for i = 1, . . . , n.

The above system of equations has two solutions (which can be found by �rst solving ⟨n̂, Xi⟩Rn+1 = 0
to express each of the n̂j's in terms of n̂t and then using the quadratic equation ⟨n̂, n̂⟩Rn+1 = 1 to
�nd a value for n̂t):

n̂ = ±
( 1√

1 + |df |2
∂

∂t
−

n∑
j=1

∂jf√
1 + |df |2

∂

∂x̄j

)
(7)

where |df |2 =
∑n

i=1(∂if)
2. From now one, we will �x a coorientation for Mf by choosing n̂ to be

equal to (7) with the + sign, i.e. n̂t = 1√
1+|df |2

and n̂j =
∂jf√
1+|df |2

, j = 1, . . . , n.

The �rst fundamental form of Mf (i.e. the induced metric on Mf ⊂ (Rn+1, gE)) takes the form:

ḡij
.
= gE(Xi, Xj) =

〈
∂if

∂

∂t
+

∂

∂x̄i
, ∂jf

∂

∂t
+

∂

∂x̄j

〉
Rn+1

= ∂if∂jf + δij.
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Note that, denoting with ∇ the Levi-Civita connection of gE (i.e. the �at connection on R
n+1), we

have

∇Xi
n̂ = Xi(n̂

t)
∂

∂t
+Xi(n̂

j)
∂

∂x̄j

= ∂i(n̂
t)
∂

∂t
+ ∂i(n̂

j)
∂

∂x̄j

= ∂i

( 1√
1 + |df |2

) ∂

∂t
−

n∑
j=1

∂i

( ∂jf√
1 + |df |2

) ∂

∂x̄j

Thus, the scalar second fundamental form b can be computed by the formula

bij
.
= b(Xi, Xj) = −gE(∇Xi

n̂, Xj)

=
〈
∂i

( 1√
1 + |df |2

) ∂

∂t
−

n∑
k=1

∂i

( ∂kf√
1 + |df |2

) ∂

∂x̄k
, ∂jf

∂

∂t
+

∂

∂x̄j

〉
Rn+1

= ∂i

( 1√
1 + |df |2

)
∂jf − ∂i

( ∂jf√
1 + |df |2

)
=

∂i∂jf√
1 + |df |2

.

The second fundamental form B then takes the form

Bij
.
= B(Xi, Xj) = b(Xi, Xj)n̂ =

∂i∂jf√
1 + |df |2

n̂.

Finally, using the Gauss equation and the fact that the Riemann curvature tensor RE of gE vanishes
identically, we have

R̄ijkl = bikbjl − bilbjk =
∂i∂kf · ∂j∂lf − ∂i∂lf · ∂j∂kf

1 + |df |2

(recall our convention that R̄ijkl = R̄(∂i, ∂j, ∂k, ∂l) = −ḡ
(
R(∂i, ∂j)∂k, ∂l

)
).

10.5 Let (Mn, g) be a smooth Riemannian manifold and let p be a point on M. For any given

0 < r̄ < ι(p), let us consider the open neighborhood U = expp

({
v : ∥v∥ < r̄

})
of p. Recall

that U \{p} is prametrized by the polar coordinates (r, ω) ∈ (0, r̄)×S
n−1, where r(·) = distg(·).

Recall also that, in any local coordinate chart (x1, . . . , xn−1) on S
n−1, the metric g in the

(r, x1, . . . , xn−1) coordinate system takes the form

g = dr2 + r2ḡij[r]dx
idxj,

where ḡij[r]
r→0−−→ (gSn−1)ij and ∂rḡij[r]

r→0−−→ 0 (with gSn−1 denoting the standard round metric
on the unit sphere).
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(a) Show that
∂r
(
r2ḡij[r]

)
= −2bij[r],

where b[ρ] is the scalar second fundamental form of the hypersurface Sρ = {r = ρ} with
respect to the coorientation determined by gradr. (Hint: Use Exercise 11.1.b.)

(b) Show that
∂rbij[r] + r−2ḡab[r] · bia[r] · bjb[r] = Rrirj,

where R is the Riemann curvature tensor of g.

* (c) Show that if R ≡ 0, then ḡij[r] = (gSn−1)ij for all r ∈ (0, r̄). Deduce, in this case, that
g is isometric to the �at metric gE. (Hint: Show that, in this case, the tensor M i

j [r] =
r−2ḡia[r] · bjb[r] on Sr satis�es, with respect to r, the matrix Ricatti ODE ∂rM −M2 = 0.
What is limr→0M?)

Solution. (a) Since, in the (r, x1, . . . , xn−1) coordinate chart, the metric takes the form

g = dr2 + r2ḡijdx
idxj,

(where, for any i, j ∈ {1, . . . , n− 1}, ḡij is a function depending on r, x1, . . . , xn−1), we calculate that

grr = 1, , qij = r2ḡij, gri = 0

and
grr = 1, gij = r−2ḡij, gri = 0

(where ḡij are the components of the inverse matrix of [ḡij]). Therefore, for the coordinate 1-form
dr, we can readily compute that

gradr
.
= dr♯ =

∂

∂r

(since (dr♯)r = grrdrr + gridri = drr = 1 and (dr♯)i = girdrr + gijdrj = 0). Using Exercise 11.1.b, we
can compute that the scalar second fundamental form of the level set Sρ = {r = ρ} of the function
r takes the form

b(X, Y ) = −Hess[r](X, Y )

∥gradr∥
= −Hess[r](X, Y ) for all X, Y ∈ Γ(M, Sρ).

Note that the tangent space at any point of Sρ is spanned by the coordinate vector �elds ∂
∂xi , i =

1, . . . , n−1 (which are also the coordinate vector �elds for the parametrization of Sρ by (x
1, . . . , xn−1)).

Therefore, applying the formula for the expression of the Hessian in local coordinates from Ex. 11.1.a,
we calculate in the (r, x1, . . . , xn−1) coordinate system:

bij = −Hess[r](∂i, ∂j) = −Hess[r]ij = −
(
∂i∂jr − Γβ

ij∂βr
)
= Γr

ij

(since ∂rr = 1, ∂ir = 0).

Remark. For the rest of this exercise, we will use the convention that Latin indices i, j, k, l, . . . ,
range over the coordinates (x1, . . . , xn−1), while Greek indices β, β, . . . range over (r, x1, . . . , xn−1).
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From our computation of the components of g and g−1, we have:

Γr
ij =

1

2
grβ

(
∂igβj + ∂jgβi − ∂βgij

)
=

1

2
grr

(
∂igrj + ∂jgri − ∂rgij

)
+

1

2
grk

(
∂igkj + ∂jgki − ∂kgij

)
= −1

2
∂rgij + 0

= −1

2
∂r(r

2ḡij).

Therefore, combining the above relations, we get the desired identity

bij = −1

2
∂r(r

2ḡij).

(b) Using the expression for the components of the Riemann curvature tensor in local coordinates

Rα
βγδ = ∂γΓ

α
βδ − ∂δΓ

α
βγ + Γα

γλΓ
λ
βδ − Γα

δλΓ
λ
βγ,

together with our calculation of the components of g and g−1, we can readily compute:

Rrirj = grβR
β
irj

= grrR
r
irj + grkR

k
irj

= Rr
irj

= ∂rΓ
r
ij − ∂jΓ

r
ir + Γr

rλΓ
λ
ij − Γr

jλΓ
λ
ir.

We already computed in part (a) that

Γr
ij = −1

2
∂r(r

2ḡij) = bij.

For the rest of the Christo�el symbols appearing in the above expression, we can similarly compute:

Γr
rr =

1

2
grβ

(
∂rgβr + ∂rgβr − ∂βgrr

)
=

1

2
grr

(
∂rgrr + ∂rgrr − ∂rgrr

)
+ 0 = 0,

Γr
ri =

1

2
grβ

(
∂rgβi + ∂igβr − ∂βgir

)
=

1

2
grr

(
∂rgri + ∂igrr − ∂rgir

)
+ 0 = 0

and

Γk
ir =

1

2
gkβ

(
∂igβr+∂rgβi−∂βgir

)
=

1

2
gkl

(
∂rgli+∂iglr−∂lgir

)
+0 =

1

2
gkl∂rgli = r−2ḡkl∂r(r

2ḡli) = −r−2ḡklbli.

Therefore,
Rrirj = ∂rΓ

r
ij − Γr

jkΓ
k
ir + 0 = ∂rbij + r−2gklbikbjl.
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(c) In the case when the Riemann curvature tensorvanishes identically, the system of equations
derived in parts (a) and (b) for ḡ and b becomes:{

∂r
(
r2ḡij

)
= −2bij,

∂rbij + r−2ḡab · bia · bjb = 0.
(8)

Let us consider the (1, 1) tensor M on Sr obtained by raising one of the indices of b, namely

M i
j = gikbkj = r−2ḡikbkj.

Thus, we can readily compute:

∂rM
i
j = ∂r(r

−2ḡikbkj)

= ∂r(r
−2ḡik)bkj + r−2ḡik∂rbkj

= ∂r(r
−2ḡik)bkj − r−2ḡikr−2ḡab · bka · bjb

= ∂r(r
−2ḡik)bkj − (r−2ḡik · bka) · (r−2ḡabbjb) = ∂r(r

−2ḡik)bkj −M i
aM

a
j ,

where, in the second to last step, we used the equation for ∂rbij above. Recall that, if A is a
matrix-valued function depending on a parameter s, then

d

ds
(A−1) = −A−1dA

ds
A−1.

Since [r−2ḡik] are the components of the inverse matrix of [r2ḡik], the above relation formula implies
that

∂r
(
r−2ḡik

)
= −

(
r−2ḡil

)
·
(
∂r(r

2ḡlm)
)
·
(
r−2ḡmk

)
= 2

(
r−2ḡil

)
· blm ·

(
r−2ḡmk

)
= 2M i

m ·
(
r−2ḡmk

)
where, in the second to last line above, we made use of (8) for ∂r(r

2ḡlm). Substituting in the right
hand side equation for ∂rM

i
j , we therefore obtain:

∂rM
i
j = 2M i

m · r−2ḡmk · bkj −M i
aM

a
j

= 2M i
mM

m
j −M i

aM
a
j

= M i
mM

m
j ,

or, in matrix notation, for the matrix M = [M i
j ]:

∂rM = M2.

Using the formula for the derivative of the inverse of a matrix, the above equation is equivalent to

∂r
(
M−1

)
= −I. (9)
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As r → 0, we have that ḡij → (gSn−1)ij and ∂rḡij → 0. Therefore, since bij = −1
2
∂r(r

2ḡij), we
have that

limr→0

(
rM i

j

)
= limr→0

(
r−1ḡikbkj

)
= −1

2
limr→0

(
r−1ḡik∂r(r

2ḡkj)
)

= −1

2
limr→0

(
r−1ḡik

(
2rḡkj + r2∂rḡkj

))
= −limr→0

(
ḡikḡkj

)
− 1

2
limr→0

(
r∂rḡkj

)
= −δij,

or, in matrix notation,
lim
r→0

(rM) = −I

and, hence,
lim
r→0

(M−1) = lim
r→0

(r(rM)−1) = 0.

Integrating the ODE (9) from r = 0 using the above initial condition, we infer that

M−1 = −rI ⇔ M = r−1
I.

In view of our de�nition M i
j = r−2ḡikbkj = −1

2
r−2ḡik∂r

(
r2ḡjk

)
, the above is equivalent to the state-

ment that

−1

2
r−2ḡik∂r

(
r2ḡjk

)
= −r−1δij.

After expanding ∂r
(
r2ḡjk

)
= 2rḡjk + r2∂rḡjk and multiplying both sides with ḡil (and summing over

i), we obtain:

−1

2
r−2

(
2rḡjl + r2∂rḡjl

)
= −r−1ḡjl ⇔ ∂rḡjl = 0.

Since limr→0 ḡij = (gSn−1)ij, we deduce that

ḡij = (gSn−1)ij.

Therefore,
g = dr2 + r2(gSn−1)ijdx

idxj = gE.

10.6 Let (M1, g1) and (M2, g2) be two Riemannian manifolds and let (M, g) = (M1×M2, g1⊕g2 be
their Riemannian product; the metric g1⊕g2 is de�ned so that, for any p = (p1, p2) ∈ M1×M2

and anyX, Y ∈ TpM ≃ Tp1M1⊕Tp2M2, ifX = X1+X2 and Y = Y1+Y2 is their corresponding
decomposition into tangent vectors tangential to M1 × {p2} and {p1} ×M2 then

g(X, Y ) = g1(X1, Y1) + g2(X2, Y2)

(in other words, M1 × {p2} and {p1} ×M2 intersect orthogonally and M1 → M1 × {p2} and
M2 → {p1} ×M2 are isometric embeddings).
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(a) Compute the Riemann curvature tensor R of (M, g) in terms of the Riemann curvature
tensors Ri of (Mi, gi), i = 1, 2.

(b) Show that the sectional curvature of (M, g) cannot be strictly positive or strictly negative
for all tangent 2-planes.

(*c) Show that there exists a surface in (S2 × S
2, gS2 ⊕ gS2) which is totally geodesic (i.e. has

vanishing second fundamental form) and is isometric to the �at torus (T2, gE).

Solution. (a) Let p = (p1, p2) ∈ M = M1 × M2; note that any pair of curves t → γi(t) ∈ Mi

with γi(0) = pi, i = 1, 2, can be identi�ed with the curve t → γ(t) = (γ1(t), γ2(t)) ∈ M, γ(0) = p.
Through this identi�cation, we can also identify γ̇(0) with (γ̇1(0), γ̇2(0); thus, we naturally have
TpM ≃ Tp1M1⊕Tp2M2, with Tp1M1 ⊂ TpM corresponding to the set of tangent directions at t = 0
of curves of the form t → (γ1(t), p2), γ1(0) = p1 (i.e. Tp1M1 corresponds to the tangent space of the
submanifold M1×{p2} at (p1, p2)), and similarly for Tp2M2. For any vector �eld V ∈ Γ(M), we will
denote with V = V1+V2 its decomposition into components tangential to M1 and M2, respectively.
If (x1, . . . , xn) is a local coordinate chart on U1 ⊂ M1 and (y1, . . . , ym) is a local coordinate chart on
U2 ⊂ M2, then in the product coordinate chart (x1, . . . , xn; y1, . . . , ym) on U = U1 × U2 ⊂ M, the
decomposition V = V1 + V2 corresponds to

V1 = V i ∂

∂xi
, V2 = V α ∂

∂yα
,

where we are using Latin letters i, j, k, . . . to denote indices associated to the chart (x1, . . . , xn) on
M1 and Greek letters α, β, γ, . . . for indices associated to the chart (y1, . . . , ym) on M2 Note that,
in general, both the components of V1 and V2 depend on both xi and yα.

For any point p ∈ M and any X, Y, Z,W ∈ TpM, we are asked to compute R(X, Y, Z,W ) in
terms of R(1), R(2) and the decompositions Xi, Yi, Zi,Wi, i = 1, 2, of X, Y, Z,W . In fact, we will show
that

R(X, Y, Z,W ) = R(1)(X1, Y1, Z1,W1) +R(2)(X2, Y2, Z2,W2). (10)

To this end, let us �x a product coordinate chart (x1, . . . , xn; y1, . . . , ym) on a neighborhood of p as
above (recall our convention that Latin indices are associated with (x1, . . . , xn), while Greek indices
are associated with (y1, . . . , yn). It is easy to verify (in view of the multilinearity of R(·, ·, ·, ·)) that
(10) will follow once we show that

Rijkl = R
(1)
ijkl, Rαβγδ = R

(2)
αβγδ

and that all the �mixed� components vanish, i.e.

Rαijk = Rαβij = Rαiβj = Rαβγi = 0

(using the symmetries of R, the above implies that any component of R with mixed Greek and Latin
indices vanishes).

Let us denote with ∇(1),∇(2) the Levi-Civita connections of the Riemannian manifolds (M1, g1)
and (M2, g2). We will now express the Christo�el symbols of the Levi-Civita connection ∇ of (M, g)
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in terms of those of ∇(1),∇(2). Note that our assumption that g = g1 ⊕ g2 is equivalent to the
statement that

gij = (g1)ij, gαβ = (g2)αβ, giα = 0

and, thus,
gij = (g1)

ij, gαβ = (g2)
αβ, giα = 0

and that the components (g1)ij of g1 depend only on (x1, . . . , xn) (and similarly for g2 and (y1, . . . , ym)).

1. The Christo�el symbols of the form Γi
jk or Γα

βγ (i.e. with indices lying entirely in one of the
charts (x1, . . . , xn) or (y1, . . . , ym)) can be computed as follows:

Γi
jk

.
=

1

2
gil

(
∂jglk + ∂kglj − ∂lgjk

)
+

1

2
giα

(
∂jgαk + ∂kgαj − ∂αgjk

)
=

1

2
(g1)

il
(
∂j(g1)lk + ∂k(g1)lj − ∂l(g1)jk

)
+ 0

= (Γ(1))ijk

and, similarly,
Γα
βγ = (Γ(2))αβγ.

2. For the Christo�el symbols of mixed type Γα
ij, we calculate

Γα
ij

.
=

1

2
gαk

(
∂igkj + ∂jgki − ∂kgij

)
+

1

2
gαβ

(
∂igβj + ∂jgβi − ∂βgij

)
= 0 + 0

(where we used the fact that gαk = gβj = gβi = 0 and that the components (g1)ij of g1 depend
only on (x1, . . . , xn)). Similarly,

Γi
αβ = 0.

3. For the Christo�el symbols of mixed type Γi
αj, we similarly have

Γi
αj

.
=

1

2
gik

(
∂αgkj + ∂jgkα − ∂kgαj

)
+

1

2
giβ

(
∂αgβj + ∂jgαβ − ∂βgαj

)
= 0 + 0

and, similarly,
Γα
βi = 0.

Collecting the above calculations, we deduce that

∇∂i∂j = ∇(1)
∂i
∂j, ∇∂α∂β = ∇(2)

∂α
∂β, ∇∂i∂α = ∇∂α∂i = 0. (11)

Moreover, if V ∈ Γ(M) is a vector �eld which is �decomposable�, in the sence that, in the product
coordinates, V (x; y) = V1(x) + V2(y) (namely the components V i are indpendent of yα and V α are
indpendent of xi), then, for any X ∈ Γ(M):

(∇XV )i = Xj∂jV
i +Xα∂αV

i + Γi
jkX

jV k + Γi
αkX

αV k + Γi
jβX

jV β + Γi
αβX

αV β
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= Xj∂jV
i + 0 + (Γ(1))ijkX

jV k + 0

= (∇(1)
X1
V1)

i

and, similarly,
(∇XV )α = (∇(2)

X2
V2)

α,

so that
∇XV = ∇(1)

X1
V1 +∇(2)

X2
V2. (12)

Remark. Let γ(t) = (γ1(t), γ2(t)) be a curve in M with γ̇1, γ̇2 ̸= 0. It is easy to verify that, in a
product coordinate system in a small enough neighborhood U of a point p of γ, the tangent vector
�eld γ̇ can be extended (in a non-unique way) to a vector �eld on U which is decomposable in the
above sense. Therefore, the acceleration of the curve γ around a point where γ̇1, γ̇2 ̸= 0 satis�es

∇γ̇ γ̇ = ∇(1)
γ̇1
γ̇1 +∇(2)

γ̇2
γ̇2.

In particular, γ is a geodesic of (M, g) if and only if γ1 and γ2 are geodesics of (M1, g1) and (M2, g2),
respectively.

Note that the coordinate vector �elds ∂
∂xi and

∂
∂yα

are decomposable (since their components are

constant functions in (x, y), equal to 0 or 1), and the same is true for the vector �elds ∇∂i∂j, ∇∂α∂β
and ∇∂α∂i, since, in view of (11), we have

(∇∂i∂j)1 = ∇(1)
∂i
∂j = (Γ(1))kij∂k, (∇∂i∂j)2 = 0

(∇∂α∂β)1 = 0, (∇∂α∂β)2 = ∇(2)
∂α
∂β = (Γ(2))γαβ∂γ,

∇∂α∂i = ∇∂i∂α = 0

and (Γ(1))kij is a function of only (x1, . . . , xn), while (Γ(2))γαβ is a function of only (y1, . . . , ym). There-
fore, using the formula (12) for those vector �elds, we have:

Rijkl
.
= R(∂i, ∂j, ∂k, ∂l)

= −g
(
∇∂i(∇∂j∂k)−∇∂j(∇∂i∂k), ∂l

)
= −g

([
∇(1)

(∂i)1
((∇∂j∂k)1) +∇(2)

(∂i)2
((∇∂j∂k)2)

]
−
[
∇(1)

(∂j)2
((∇∂i∂k)1)−

(
∇(2)

(∂j)2
((∇∂i∂k)2)

]
, ∂l

)
= −g

(
∇(1)

∂i
((∇∂j∂k)1) + 0−

(
∇(1)

(∂j)2
((∇∂i∂k)1)− 0, ∂l

)
= −g

(
∇(1)

∂i
∇(1)

∂j
∂k −∇(1)

∂j
∇(1)

∂i
∂k, ∂l

)
= −g1

((
∇(1)

∂i
∇(1)

∂j
∂k −∇(1)

∂j
∇(1)

∂i
∂k
)
1
, (∂l)1

)
− g2

((
∇(1)

∂i
∇(1)

∂j
∂k −∇(1)

∂j
∇(1)

∂i
∂k
)
2
, (∂l)2

)
= −g1

(
∇(1)

∂i
∇(1)

∂j
∂k −∇(1)

∂j
∇(1)

∂i
∂k, ∂l

)
− 0

= R
(1)
ijkl

Page 15



EPFL� Spring 2025

SOLUTIONS: Series 10

Di�erential Geometry III:

Riemannian Geometry
G. Moschidis

2 May 2025

and, similarly, with the roles of M1 and M2 inverted:

Rαβγδ = R
(2)
αβγδ.

Moreover,

Rαijk
.
= R(∂α, ∂i, ∂j, ∂k)

= −g
(
∇∂α(∇∂i∂j)−∇∂i(∇∂α∂j), ∂k

)
= −g

(
∇(1)

(∂α)1

(
(∇∂i∂j)1

)
+∇(2)

(∂α)2

(
(∇∂i∂j)2

)
−∇(1)

(∂i)1

(
(∇∂α∂j)1

)
−∇(2)

(∂i)2

(
(∇∂α∂j)2

)
, ∂k

)
= −g

(
0 + 0− 0− 0, ∂k

)
= 0

and, similarly for the rest of the mixed components:

Rαβij = Rαiβj = Rαβγi = 0.

Therefore, (10) holds.

(b) In part (a) of this exercise, we computed that, in a product coordinate system (x1, . . . , xn; y1, . . . , ym),
the mixed components of the Riemann curvature tensor of the form Rαiβj vanish identically. There-
fore, if Π ⊂ TpM is the 2-plane spanned by the coordinate vector �elds ∂

∂xi and
∂

∂yα
, then

Kp(Π) =
Riαiα

∥∂i ∧ ∂α∥2
= 0.

Hence, the sectional curvature cannot be strictly positive or strictly negative for all 2-planes in TpM.

(c) Let S1 be one of the equators of (S
2, gS2) (in the standard spherical coordinates (θ, ϕ) on S

2,
(θ, ϕ) ∈ [0, π] × [0, 2π), we can pick S1 to be the curve θ = π

2
). Let γ : [0, 2π) → S1 be a geodesic

parametrization of S1 (so that γ(t) is a geodesic curve in (S2, gS2).
In the product Riemannian manifold (S2×S

2, gS2⊕gS2), let us consider the 2-surface S = S1×S1;
this surface is homeomorphic to S1 × S

1 = T
2 and is parametrized by Ψ : [0, 2π)× [0, 2π) → S

2 × S
2,

Ψ(t, s) = (γ(t), γ(s)). Since the curve γ(t) is a geodesic of (S2, gS2), our remark below (12) imples
that all the curves of the form t →

(
γ(λ1t + t1), γ(λ2t + t2)

)
∈ S for λ1, λ2 ̸= 0 are geodesics of

(S2 × S
2, gS2 ⊕ gS2). Notice that, for each p ∈ S, the set of curves of this type that pass through p

span a dense subset of TpS. As we showed in part (a) of Exercise 9.3, the second fundamental form
B(·, ·) of S ⊂ S

2 × S
2 must vanish in those directions; hence, since B(·, ·) is bilinear (and, therefore,

continuous) on TpS, we must have

B(v, v) = 0 for all v ∈ TpS.

Since B(·, ·) is also symmetric, we infer that

B(v, w) = 0 for all v, w ∈ TpS.

Therefore, S is a totally geodesic submanifold of (S2 × S
2, gS2 ⊕ gS2).
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